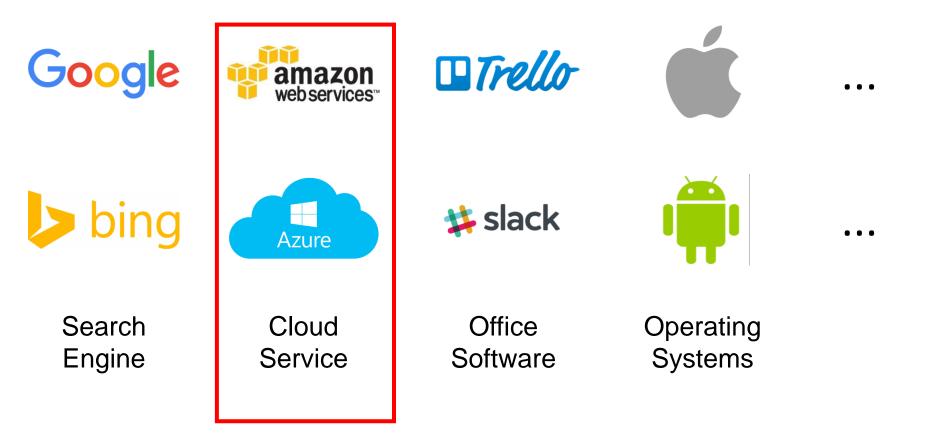


Reliability-Driven AlOps for Cloud Resilience

Prof. Michael R. Lyu

The Chinese University of Hong Kong

Modern software systems are serving many aspects of our life



Cloud Computing

Cloud adoption rising

G Suite

31

Cloud revenue growing

	2018	2019	2020	2021	2022
Cloud Business Process Services (BPaaS)	41.7	43.7	46.9	50.2	53.8
Cloud Application Infrastructure Services (PaaS)	26.4	32.2	39.7	48.3	58.0
Cloud Application Services (SaaS)	85.7	99.5	116.0	133.0	151.1
Cloud Management and Security Services	10.5	12.0	13.8	15.7	17.6
Cloud System Infrastructure Services (IaaS)	32.4	40.3	50.0	61.3	74.1
Total Market	196.7	227.8	266.4	308.5	354.6

webservices Azure ORACLE

BPaaS = business process as a service; laaS = infrastructure as a service; PaaS = platform as a service; SaaS = software as a service

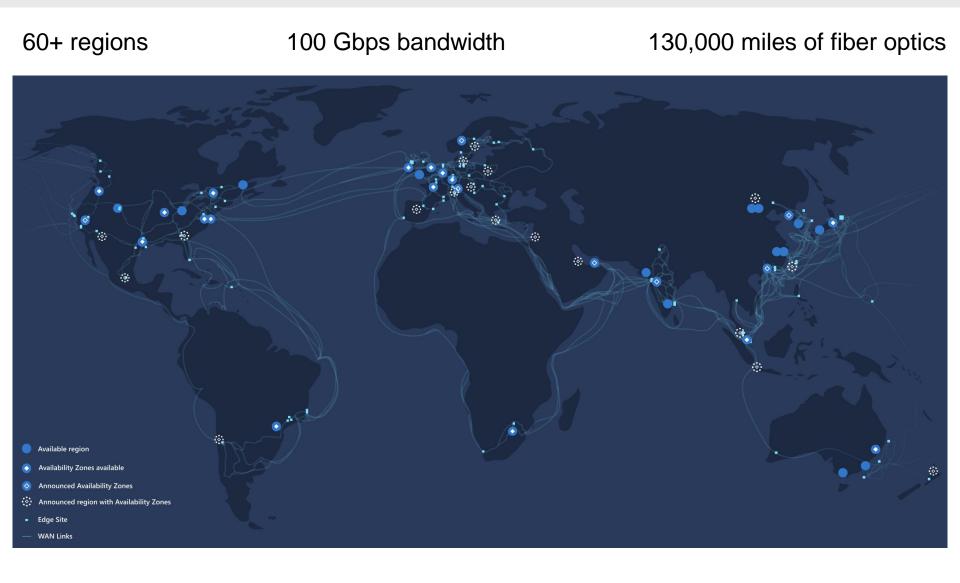
Office 365

Worldwide Public Cloud Service Revenue Forecast (Billions of U.S. Dollars)

h

Blackboard

Microsoft Azure Global Network



Real-World Revenue Loss

Lloyd's Estimates the Impact of a U.S. Cloud Outage at \$19 Billion

By: Sean Michael Kerner | January 24, 2018

A joint research report from insurance provider Lloyd's of London and the American Institutes for Research (AIR), looks at the potential costs related to a major public cloud outage in the U.S.

left to cover the rest of the costs.

As organizations around the world increasingly rely on the cloud, the impact of a public cloud failure is something that insurance companies are now concerned about. A 67-page report released on Jan. 23 from Lloyd's of London and AIR Worldwide provides some insight and estimates on the potential losses from a major cloud services outage—and the numbers are large.

According to the report, a cyber-incident that impacted the operations of one of the top three public cloud providers in the U.S. for three to six days, could result in total losses of up to \$19 billion. Of those loses, only \$1.1 to \$3.5 billion would be insured, leaving organizations

Cloud Resilience Is Very Crucial!

Down: Microsoft Tweets About Major Oul

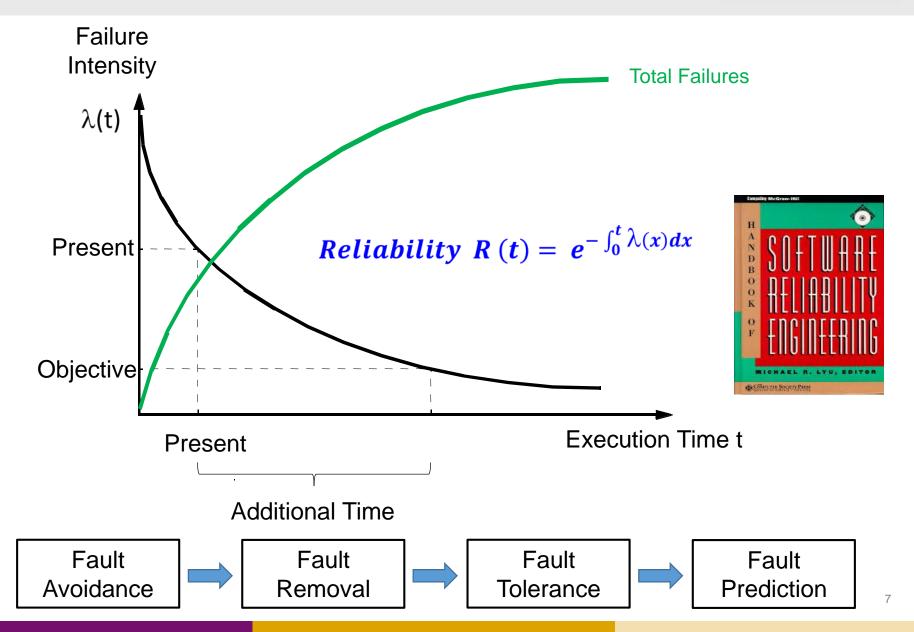
- State-of-the-art cloud reliability
 - Service Level Agreement (SLA)
 - 5-6 9s' availability
 - High degree of automation
- Cloud reliability issues
 - Tough cloud failures take a long time to mitigate
 - Impose large revenue loss
 - Harm customer trust and enterprise reputation

in

f

Google Cloud in Major Global Outage: Numerous Services Fail

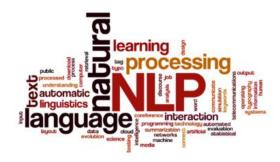
Site Reliability Engineering (SRE)



Data-Driven AI Applications

Data

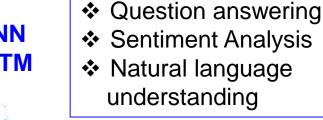
MAGENET



IBM CodeNet

CNN GNN RNN Recurrent **LSTM** Transfer Learning **Reinforcement Learning in ML** Input Raw Data Output Environment

Models/Paradigms



Code summarization

Tasks

Image localization

✤ Machine translation

Information retrieval

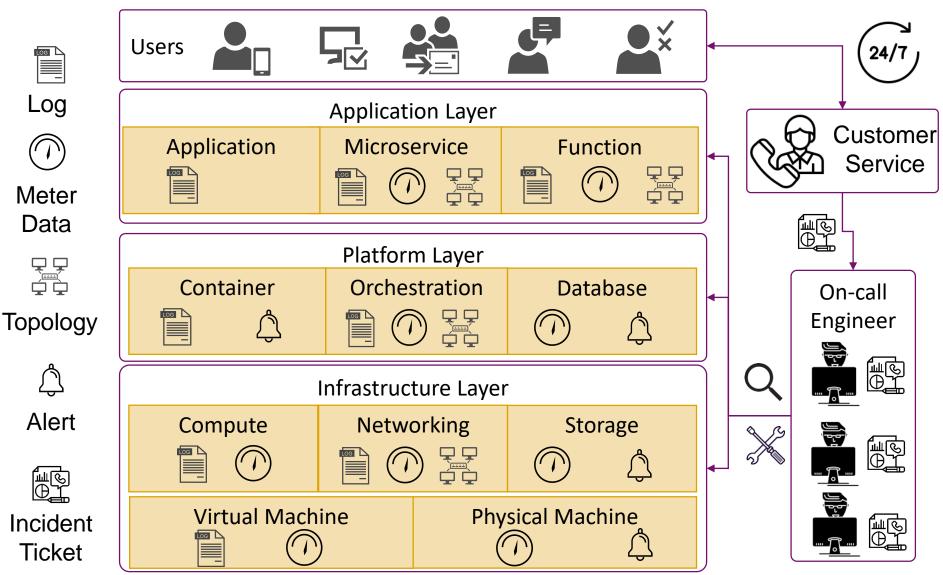
Object detection

Image classification

Semantic segmentation

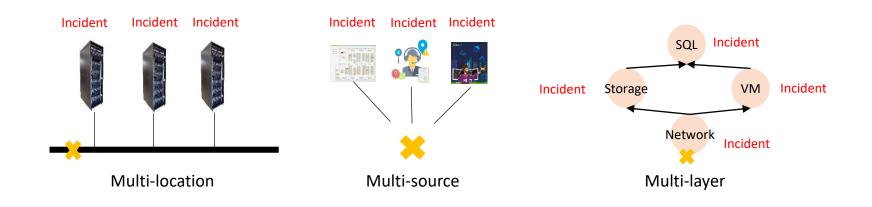
- Code clone detection ••••
- Code suggestion
- **API** recommendation
- **Bug localization** **
- Semantic parsing

Cloud Generates a Variety of Data



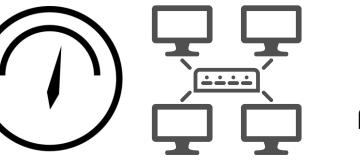
Challenges of Resilient Cloud Operations

- Current Status:
 - · Incidents are highly-correlated, but separately resolved
- Reasons:
 - New DevOps paradigm, complex service dependency, load balance, backup and restore



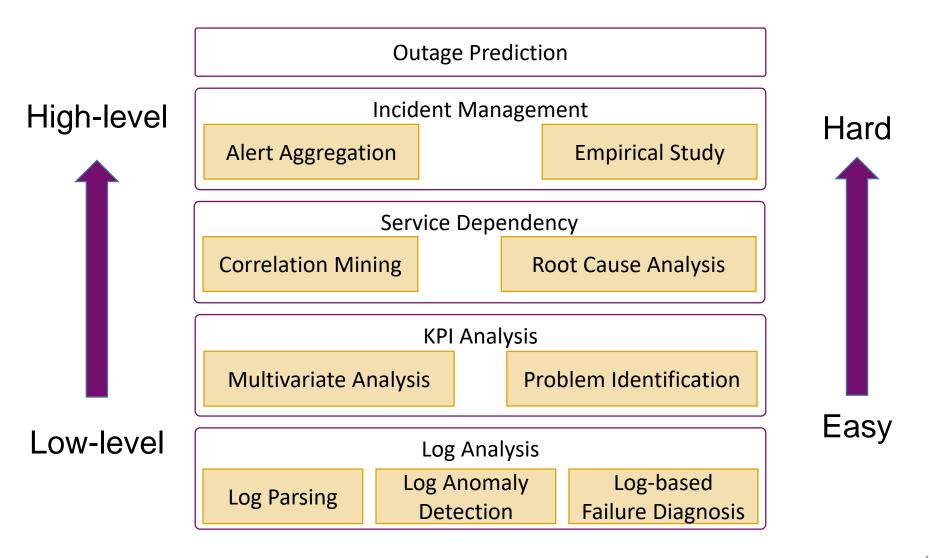
Humans are not good at solving this large-scale complex problem, but AI is

AlOps for Cloud Resilience

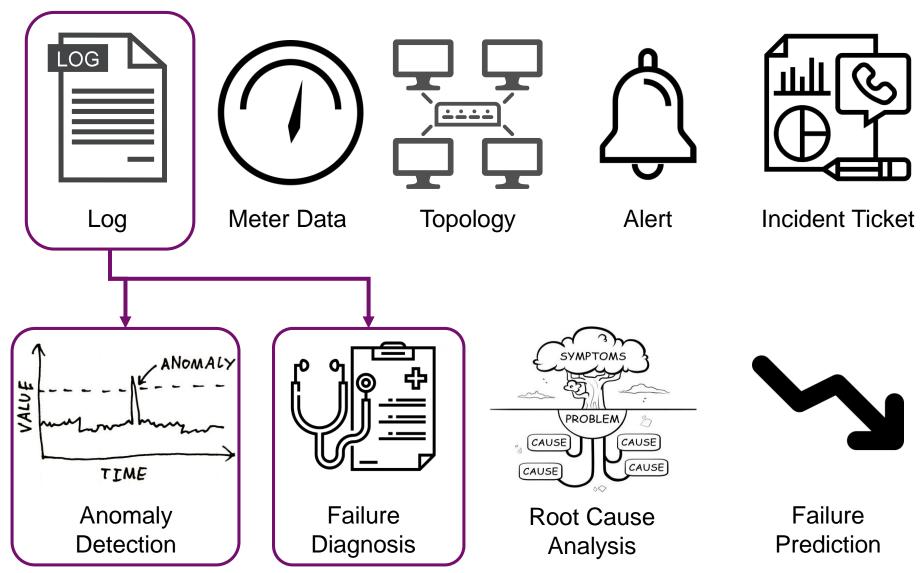


Log	Meter Data	Topology	Alert	Incident Ticket			
Abnormal ri 100		Low					
Network int 8 80	temporary/	3:40:58 BLOCK* NameSystem.allocato task_200811101024_0010_m_00001 4791815409399662	eBlock: /user/root/randtxt4/ 1_0/part-	High			
Traffic burs		3:40:59 Receiving block blk_90479181):55700 dest: /10.251.43.210:50010	5409399662 src:/	Low			
ANOMA		3:41:01 Receiving block blk_90479181 4:52231 dest: /10.250.18.114:50010	5409399662 src: /	Medium			
w		3:41:48 PacketResponder 0 for block k	acketResponder 0 for block blk_904791815409399662				
mind many	5 2008-11-11 0 from /10.250.	3:41:48 Received block blk_90479181 18.114	5409399662 of size 67108864	Me nyina			
	6 2008-11-11 0 terminating	3:41:48 PacketResponder 1 for block k	olk_904791815409399662	4			
TIME	7 2008-11-11 0 from /10.251	3:41:48 Received block blk_90479181 43.210	5409399662 of size 67108864	Medium			
Database a Antrantaly 0		3:41:48 BLOCK* NameSystem.addSto D:50010 is added to blk_90479181540		of ault			
Monitor det	10.250.18.11	3:41:48 BLOCK* NameSystem.addStor 4:50010 is added to blk_90479181540 8:30:54 Verification succeeded for blk	9399662 size 67108864	Prediction			

Main Contents in This Talk



AIOps: Log Analysis



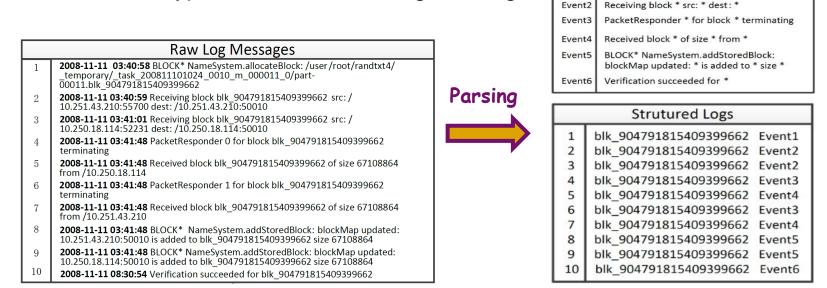
Log Parsing: Preprocessing of Log Data

Log Events

Event1

BLOCK* NameSystem.allocateBlock: *

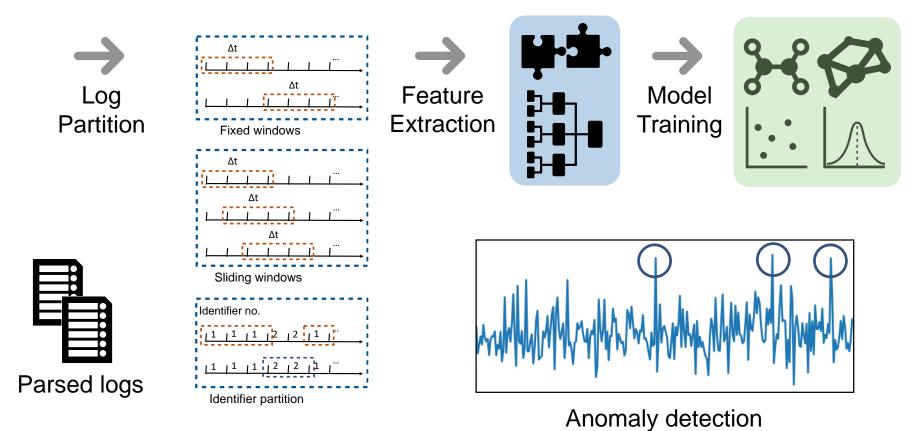
- Objective
 - transform raw log data to structural data
- Key problem to solve
 - extract event type and variables in log messages



P. He, J. Zhu, S. He, J. Li and M. R. Lyu, "An Evaluation Study on Log Parsing and Its Use in Log Mining," DSN, 2016.
P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An Online Log Parsing Approach with Fixed Depth Tree," ICWS, 2017.
P. He, J. Zhu, S. He, J. Li, and M.R. Lyu, "Towards Automated Log Parsing for Large-Scale Log Data Analysis," TDSC, 2018.

Log Anomaly Detection

• Feature Engineering



Log Anomaly Detection

		Methods		Algorithm/Model	Feature	Unsupervised Online		
		Xu et al. [180]		PCA \star † Yes			No	
	ng	Lin <i>et al.</i> [108]		Clustering	*	Yes	No	
	[ni	He et al. [75]		Clustering	*★	Yes	No	
	Traditional machine learning	Liang <i>et al.</i> [104]		SVM	‡	No	No	
	lel	Kimura <i>et al.</i> [91]		SVM	+	No	No	
	hir	Xu et al. [179]	F	requent pattern mining	*★	Yes	Yes	
	ac	Shang <i>et al.</i> [161]	F	requent pattern mining	*	Yes	No	
		Lou <i>et al.</i> [125]	F	requent pattern mining	*	Yes	No	
	nal	Farshchi et al. [54]	F	requent pattern mining	*	Yes	No	
	tio	Nandi <i>et al.</i> [145]		Graph mining	I	Yes	No	
	ipi	Lou et al. [124]		Graph mining	P	Yes	No	
	Ira	Yamanishi et al. [181]		Statistical model	*	Yes	No	
		He et al. [76]		Logistic regression * No		No		
	ğ	Du <i>et al.</i> [46]		LSTM model	* †	Yes	Yes	
	nir	Zhang <i>et al.</i> [196]	LS	STM classification model	*	No	No	
า	learnir	Meng <i>et al.</i> [136]		LSTM model	*★	Yes	Yes	
lι	le	Xia et al. [177]	L	STM-based GAN model	*	Yes	Yes	
	ep	Lu <i>et al.</i> [128]		CNN model	*	No	No	
	D	Liu et al. [109]	C	Graph embedding model	I	Yes	No	

* Log event sequence, \star Log event count vector, † Parameter value vector

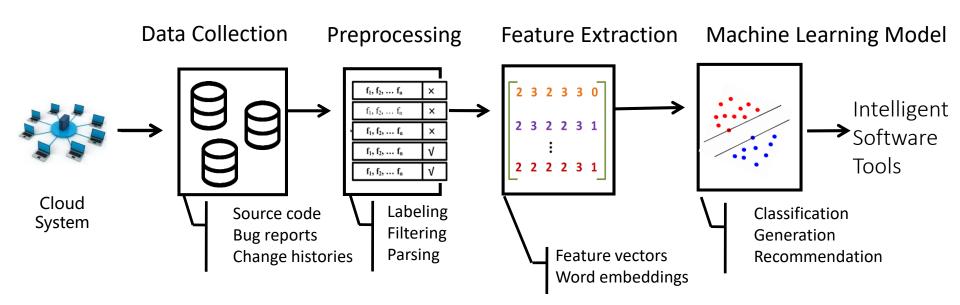
 \ddagger Ad hoc features, \P Graphical feature

Dir

S. He, P. He, Z. Chen, T. Yang, Y. Su and M.R. Lyu, "A Survey on Automated Log Analysis for Reliability Engineering". ACM Comput. Surv. 2021

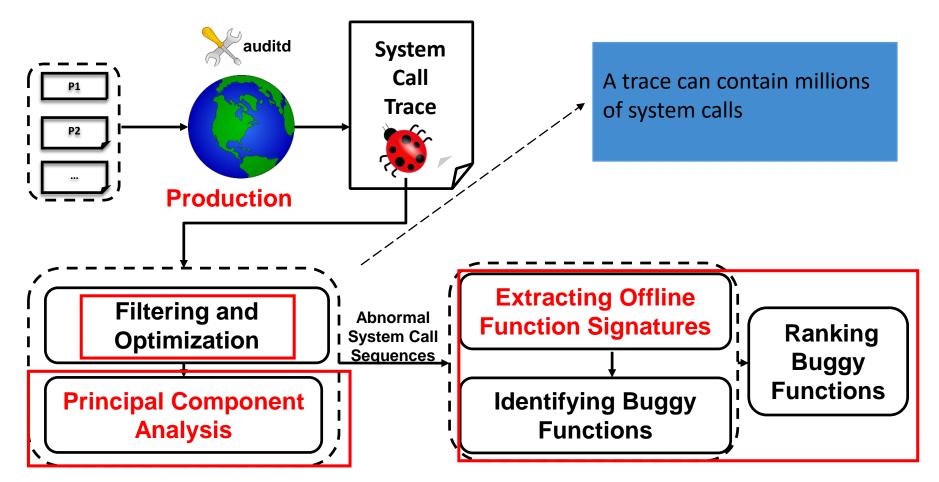
Log-based Failure Diagnosis for Cloud System

• Log is the major source for failure diagnosis

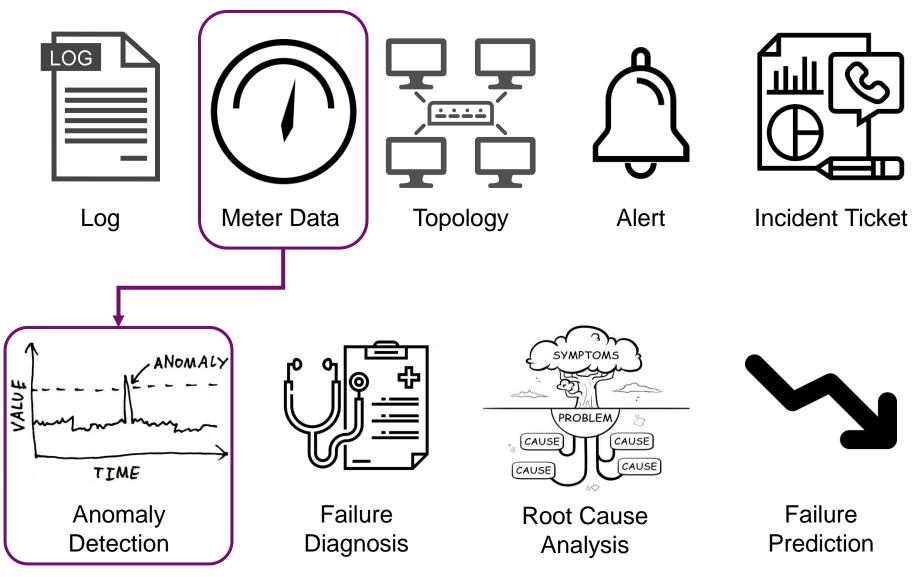


Failure Diagnosis: Ranking Buggy Functions

• PCA algorithm to find abnormal components

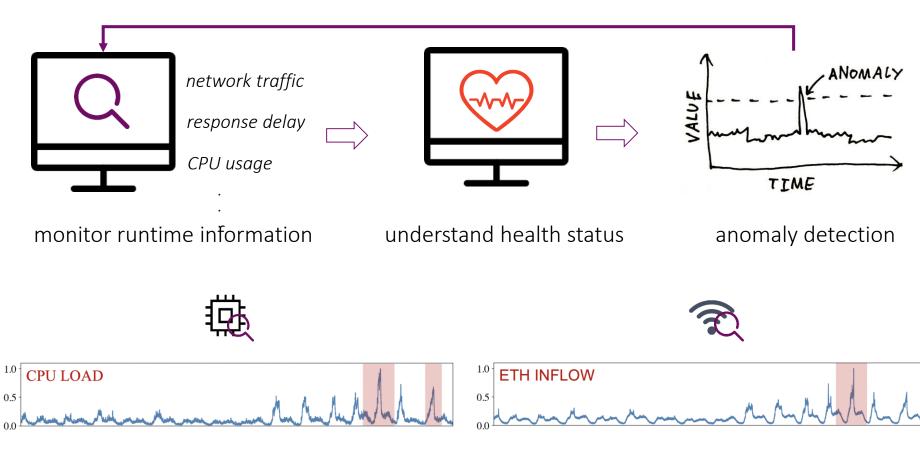


AIOps: KPIs Analysis



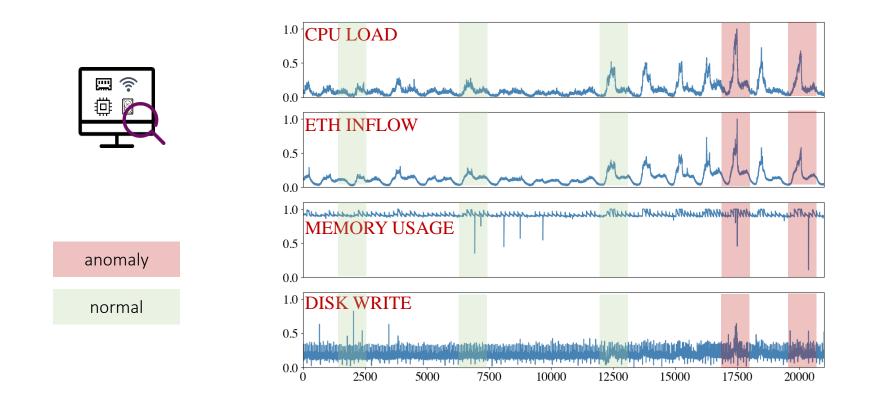
Key Performance Indicators (KPIs)

system anomaly

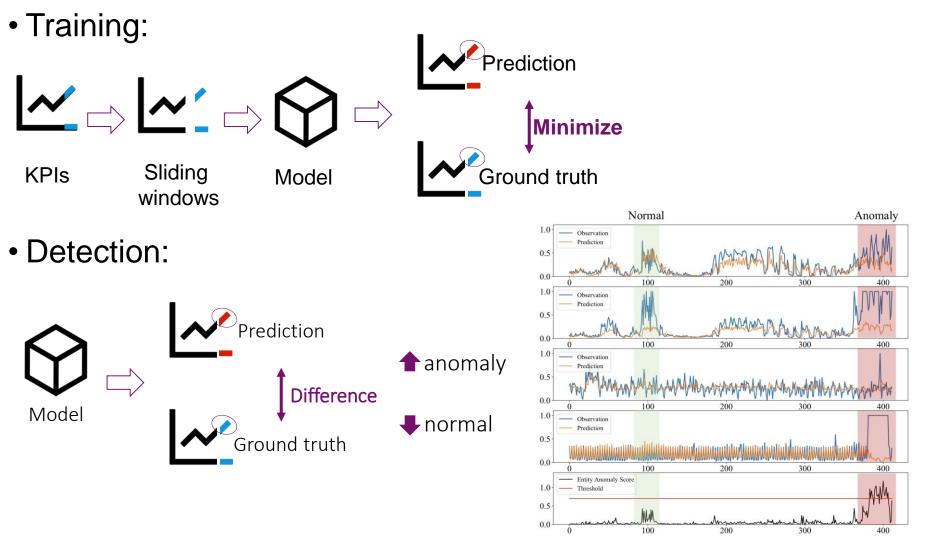


Multivariate KPIs Analysis

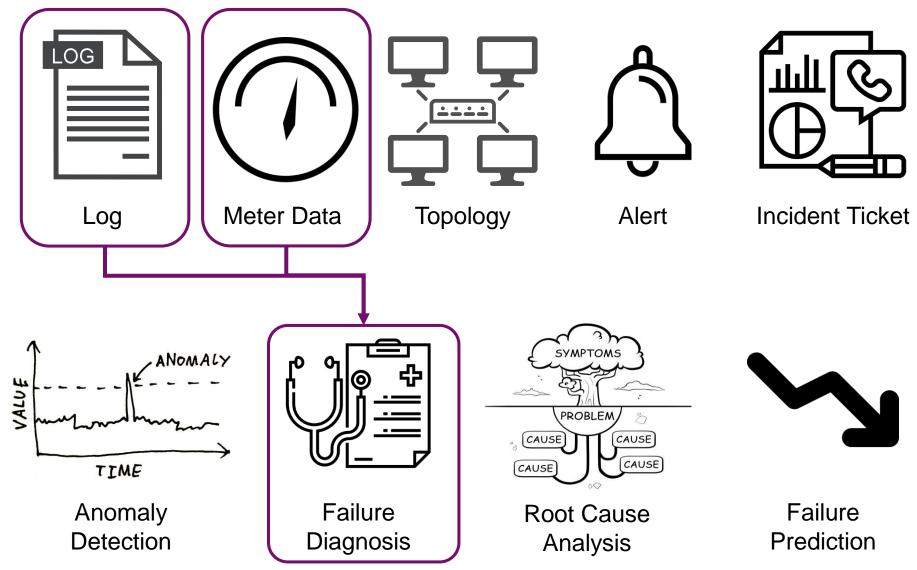
- Should capture dependency of multivariate KPIs
- Unsupervised anomaly detection



Machine Learning Algorithms

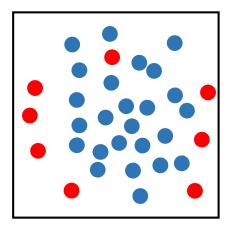


AlOps: Correlation between Logs and KPIs



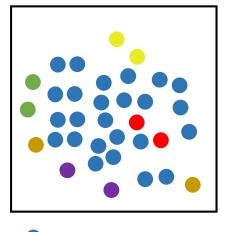
Two Automated Log Analysis Tasks

Anomaly Detection (binary classification)



NormalAnomalous

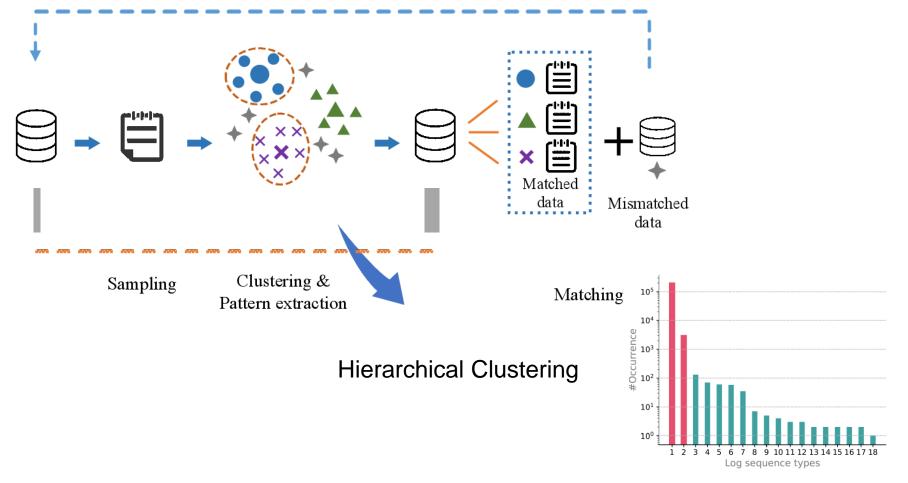
Problem Identification (multiclass classification)



NormalDifferent types of problem

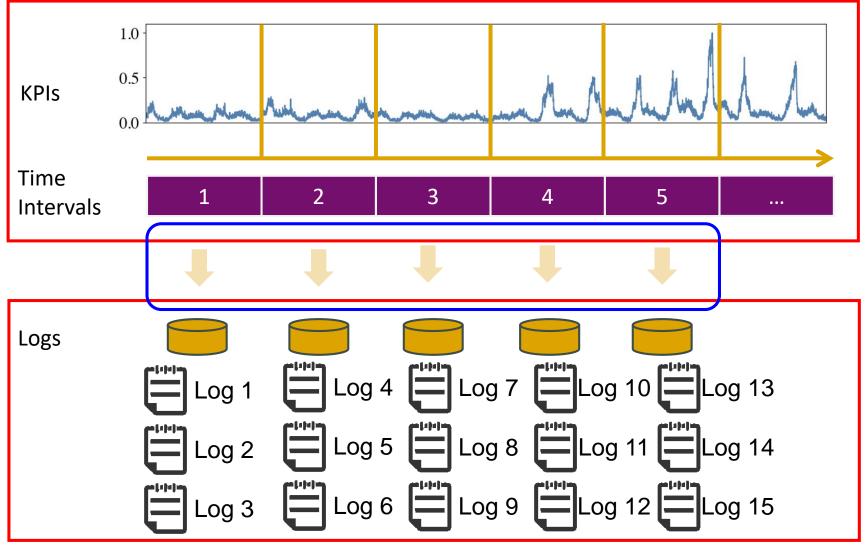
Efficient Multi-class Classification / Clustering

• Efficient and effective cascading clustering



S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu and D. Zhang, "Identifying impactful service system problems via log analysis," FSE, 2018.

Relation between Log and KPI



Problem Identification

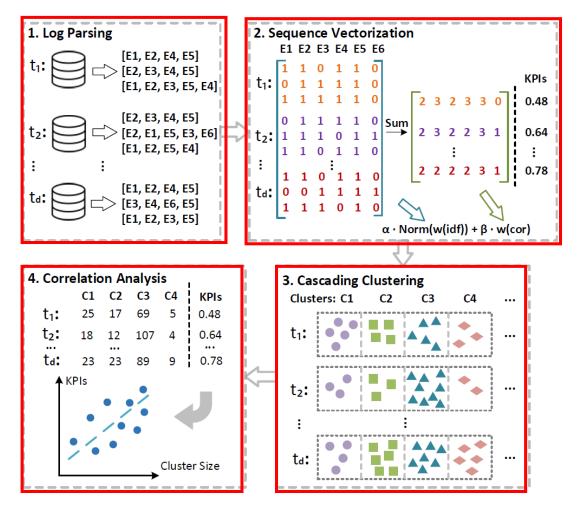
- Impactful problems:
 - Can lead to the degradation of KPI.

• Target:

 Identify clusters that are highly correlated with KPI's changes.

Method:

 Model the relation between cluster sizes and KPI values



Problem Identification

Evaluation on real Microsoft Azure data

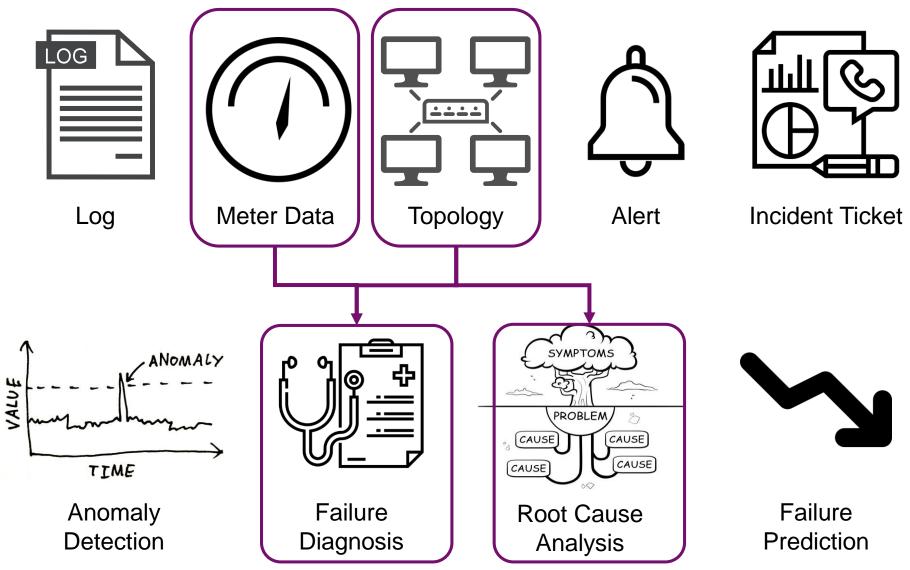
Data	Snapshot starts	#Log Seq (Size)	#Events	#Types
Data 1	Sept 5th 10:50	359,843 (722MB)	365	16
Data 2	Oct 5th 04:30	472,399 (996MB)	526	21
Data 3	Nov 5th 18:50	184,751 (407MB)	409	14

Table 1: Summary of Service X Log Data

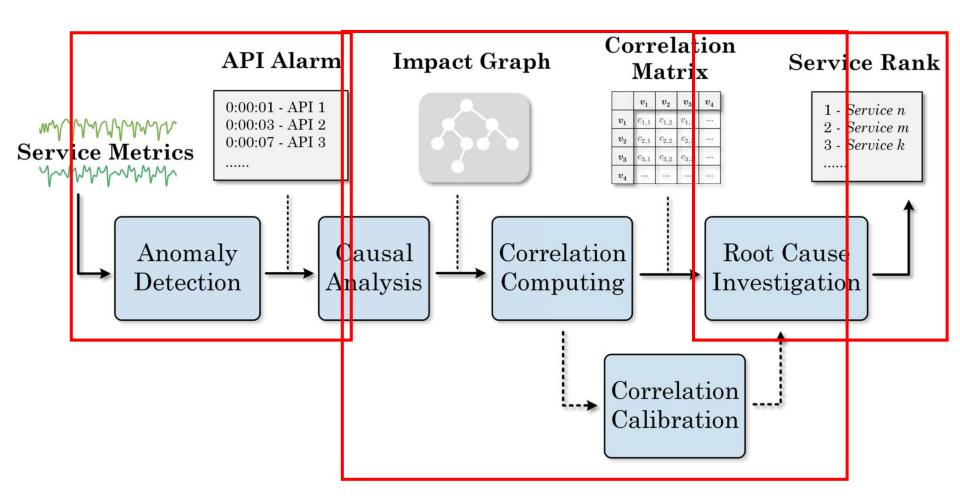
Table 2: Accuracy of Problem Detection on Service X Data

Data	Data 1			Data 2			Data 3		
Metrics	Precision	Recall	F1-measure	Precision	Recall	F1-measure	Precision	Recall	F1-measure
PCA	0.465	0.946	0.623	0.142	0.834	0.242	0.207	0.922	0.338
Invariants Mining	0.604	1	0.753	0.160	0.847	0.269	0.168	0.704	0.271
Log3C	0.900	0.920	0.910	0.897	0.826	0.860	0.834	0.903	0.868

AlOps: Service Dependency

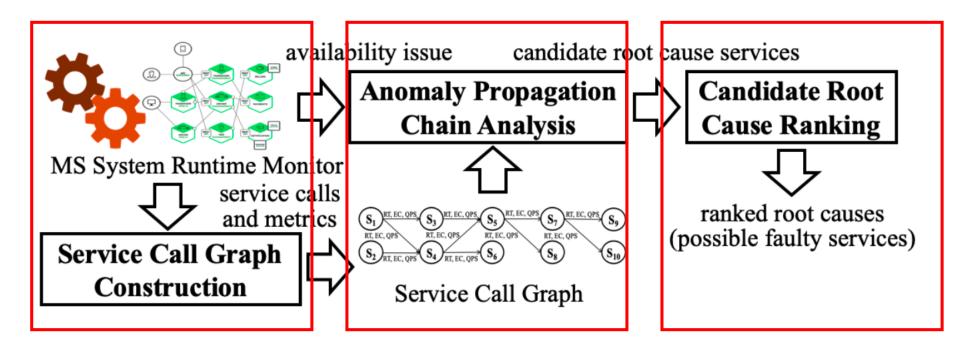


From Correlation to Root Cause Investigation



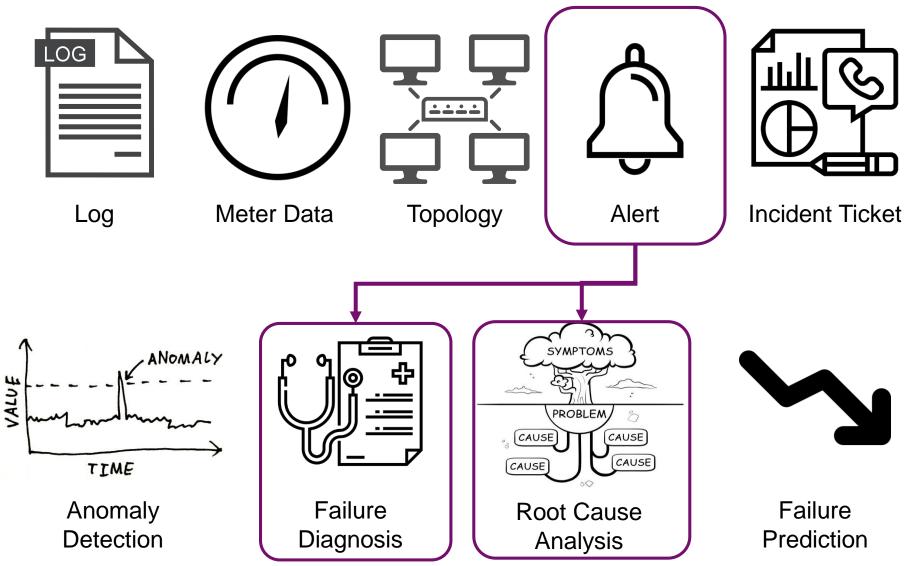
Root Cause Analysis: Service Call Graph

- Metric data: response time, error counts, queries per seconds
- Anomaly propagation chains
- Rank candidate root causes based on correlation analysis



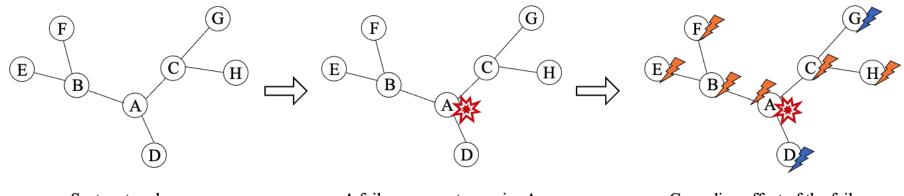
D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou, and Z. Wu. 'MicroHECL: High-Efficient Root Cause Localization in Large-Scale Microservice Systems'. *ArXiv:2103.01782*, 2021

AlOps: Alert Aggregation



Objectives

- Alert aggregation
 - Group alerts associated the same failure
 - Narrow down the problem scope
- Root cause recommendation
 - Recommend culprit incidents
 - Speed up fault localization



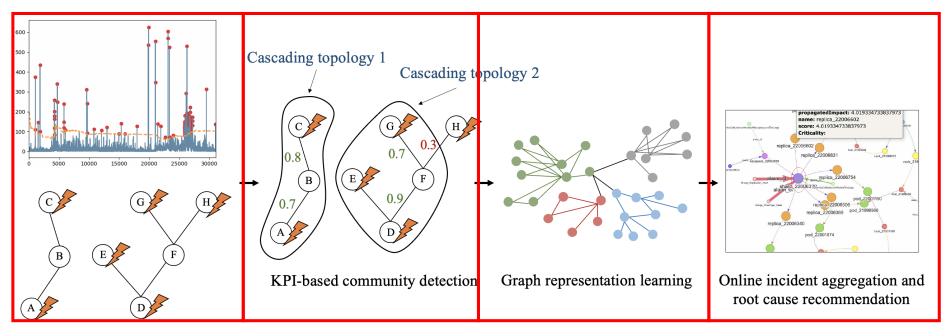
System topology

A failure occurs to service A

Cascading effect of the failure

Graph Representation Learning

- Fine-grained cloud monitoring data to auto-complete the graphs
- Temporal and topological relationship to learn the alert representation vector



Cloud failure detection

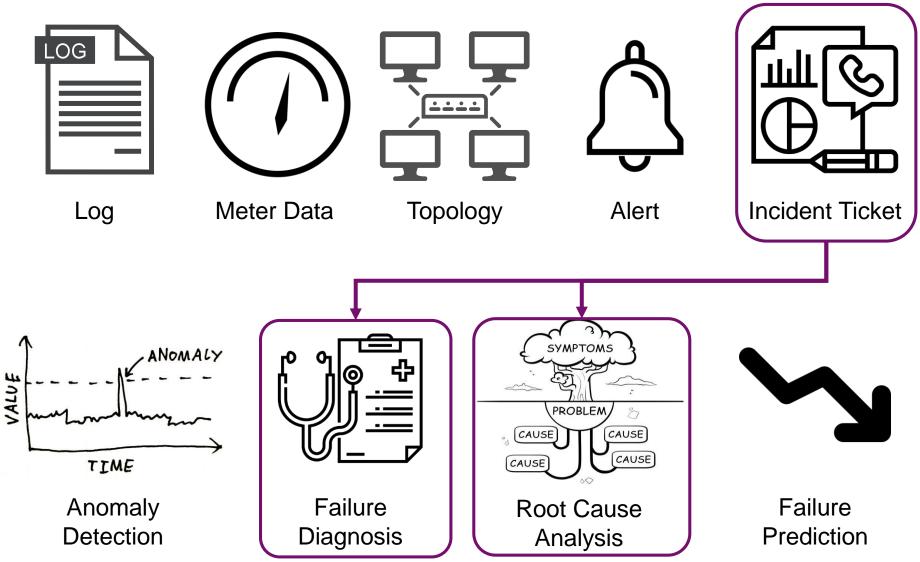
Graph Representation Learning

- Fine-grained cloud monitoring data to auto-complete the graphs
- Temporal and topological relationship to learn the alert representation vector

		FP-Growth	TF-IDF	Zhao's approach	Our approach
Online Incident Aggregation	NMI	0.42	N/A	0.61	0.9
Root Cause	Precision	N/A	0.73	0.81	0.91
Recommendation	Recall	N/A	0.77	0.88	0.93
	F1 score	N/A	0.75	0.85	0.92

A real case in a top public cloud

AIOps: Incident Management



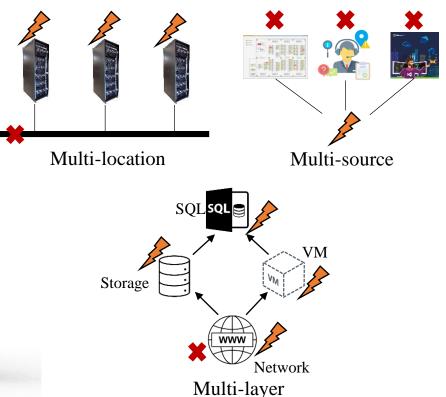
Inefficient and Error-prone Workflow

Significant delays

Critical incident detection
Impact scope identification
Root cause analysis
etc.

Complicated root causes

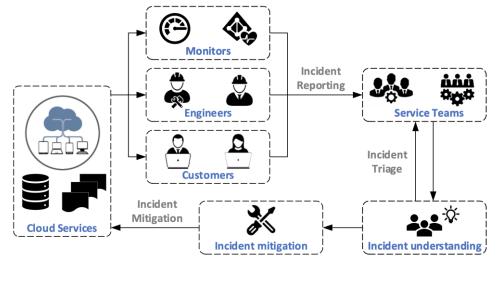
Multi-location
Multi-source
Multi-layer
etc.

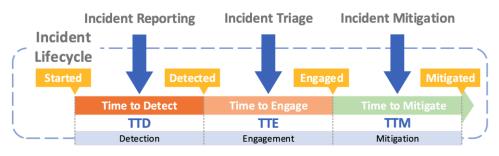


Incident Management

Incident management procedure

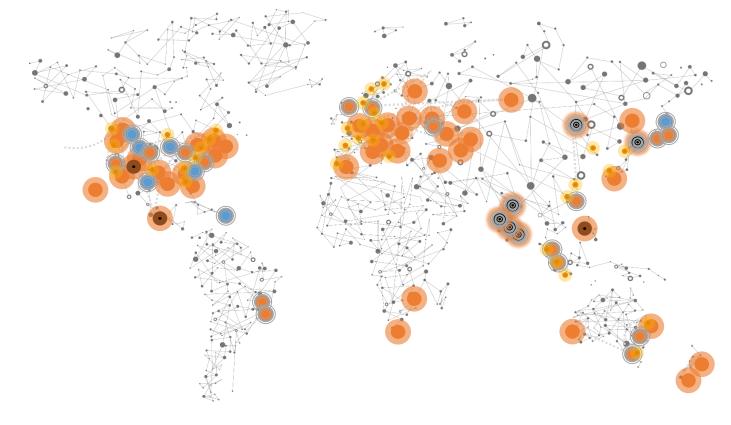
- Incident reporting
 - Time to detect (TTD)
- Incident triage
 - Time to engage (TTE)
- Incident mitigation
 - Time to mitigate (TTM)





Incident Mitigation

- Incident mitigation is important yet challenging
 - Large volume of incidents
 - Cross-region failures
 - Cloud system complexity
 - etc.



Characteristics of Incidents

- Incident severity
 - Low + Medium incidents > 90%
 - High incidents from 1.21% (Network) to 5.48% (DCM)
 - Critical incidents < 0.5%

	DCM	Network	Storage	Compute	Database	WS
Critical	0.01%	0.01%	0.01%	0.31%	0.40%	0.07%
High	5.48%	1.21%	2.57%	5.27%	4.32%	3.33%
Medium	86.65%	46.90%	43.32%	74.19%	63.93%	84.52%
Low	7.86%	51.88%	54.10%	20.23%	31.35%	12.08%

Distribution of incident severity

Characteristics of Incidents

Incident fixing time

- Time to fix (TTF) = TTD+TTE+TTM
- TTF of Low & Medium incidents > TTF of High incidents
- TTF of Critical is the largest

	DCM	Network	Storage	Compute	Database	WS
Critical	38.33x	8.46x	10.06x	142.05x	209.97x	286.6x
High	19.25x	3.18x	2.52x	2.56x	5.75x	3.56x
Medium	1x	9.8x	7.09x	2.95x	25.28x	12.93x
Low	3.01x	5.49x	1.09x	11.65x	2.41x	144.79x

Distribution of incident fixing time

Characteristics of Incidents

• Root Cause:

- Network Issue •
- Human Error •
- Deployment Issue ٠
- External Issue •
- Capacity Issue ٠
- Others ٠

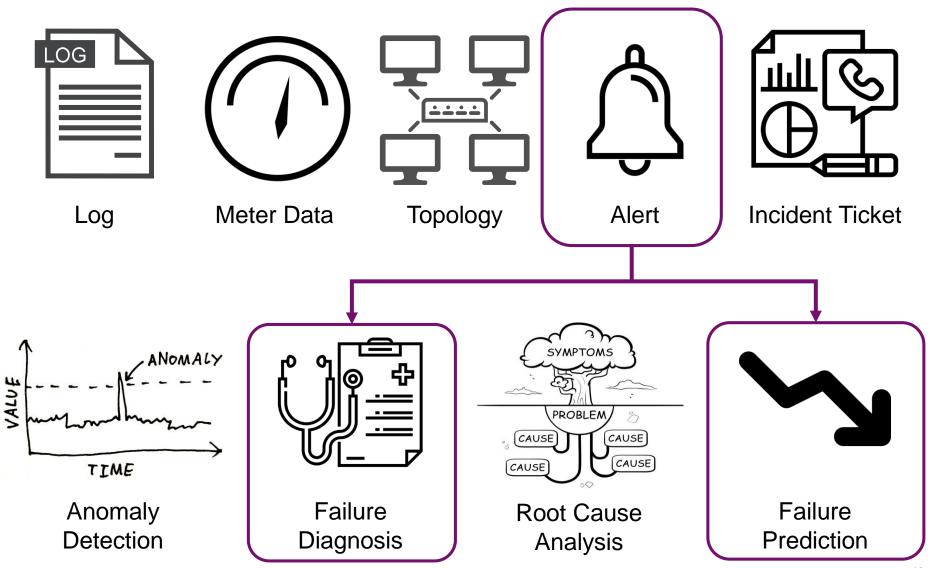
30.6%

Network (Hardware) 22.95% Human Error (Code Defect) 19.23%	
Network (Connectivity) 2.24% Human Error (Config.) 7.45%	- 37.39
Network (Config.)0.89%Human Error (Design Flaw)5.66%	57.5
Network (Other)4.47%Human Error (Integration)2.09%	
Deployment (Upgrade) 5.22% Human Error (Other) 2.83%	
Deployment (Config.)3.87%External Issue (Partner)2.83%	
Deployment (Other) 1.19% External Issue (Other) 1.64%	
Capacity Issue 6.56% Others 10.88%	

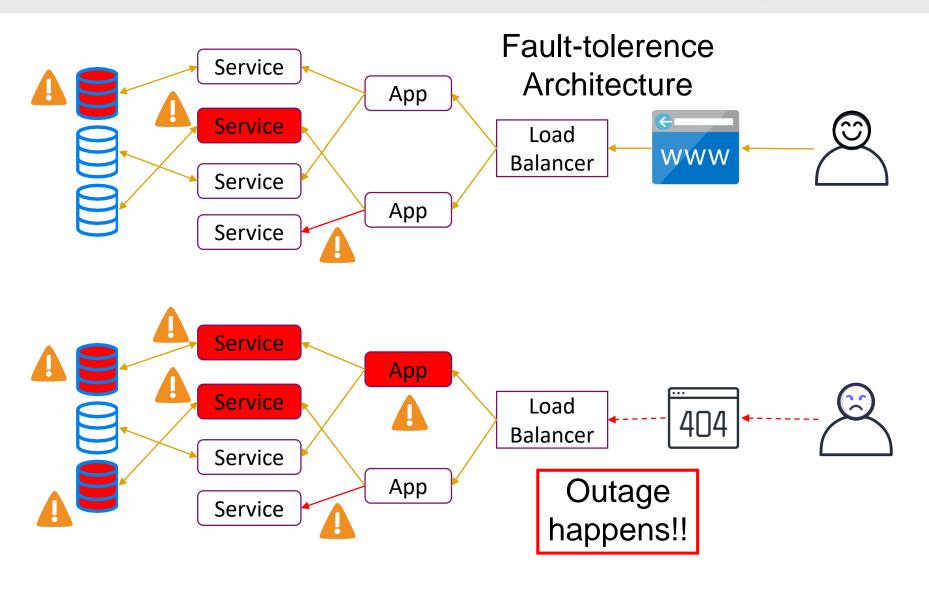
Distribution of incident root causes

%

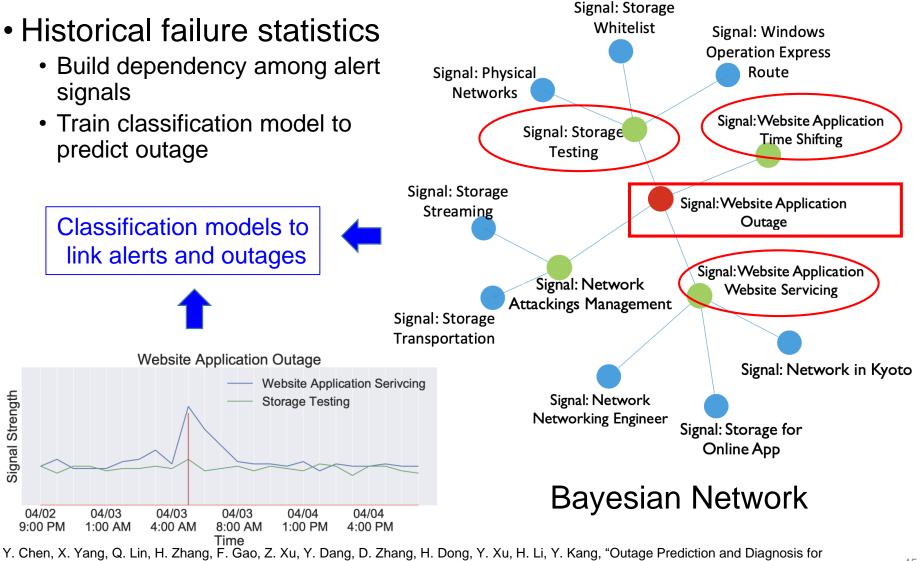
AlOps: Outage Prediction



Alerts vs Outage



Causal Relationship between Alerts and Outage



Cloud Service Systems", WWW 2019

Causal Relationship between Alerts and Sector Courage

Table 1: Comparison of different methods for component-level outage prediction.

	Outage			Outage (Physical Networking)			Outage		
	(Storage Location)		(Storage Streaming)						
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
Simple Spike	61.65	100.00	76.28	73.71	67.71	70.58	61.52	100.00	76.18
PLR	70.02	92.71	79,78	67.72	83.33	74.72	63.23	91.67	74.84
SVM	65.65	95.83	77.92	63.13	88.54	73.71	58.62	88.64	70.57
AirAlert Related	65.31	100.00	79.01	63.33	98.95	77.25	62.34	100.00	76.80
AirAlert Full	71.11	100.00	83.17	69.07	100.00	81.71	63.75	98.99	77.86

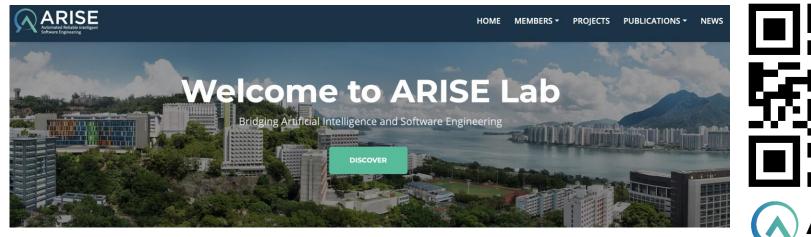
Table 2: Comparison of different methods for service-level outage prediction.

	Outage (Website Application)			Outage (Cloud Network)			Outage (Microsoft Cloud System Operation)		
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
Simple Spike	5.73	11.83	7.72	4.47	67.74	8.39	7.27	29.03	11.63
PLR	61.18	54.17	57.46	26.27	60.52	36.64	20.36	35.17	25.79
SVM	66.41	88.54	75.89	6.89	88.42	12.78	26.90	22.50	24.50
AirAlert Related	92.18	85.63	88.78	62.08	47.65	53.92	72.40	77.96	75.08
AirAlert Full	82.75	76.74	79.63	75.93	67.07	71.22	72.59	50.15	59.32

Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang, H. Dong, Y. Xu, H. Li, Y. Kang, "Outage Prediction and Diagnosis for Cloud Service Systems", WWW 2019

Conclusions

- Why cloud resilience needs AIOps?
 - Endless pursuit of reliability
 - From automatic to intelligent, from reactive to proactive
 - Important data sources: log, meter data, topology, alert and incident ticket
- How AIOps achieves reliability goals?
 - Endless pursuit of advnaced algorithms
 - From anomaly detection, fialure diagnosis, root cause analysis to failure prediction
 - Intelligent algorithms designed with human experts' experiences
- What's the next?
 - How to integrate human knowledge with algorithms automatically and comprehensively?
 - Further investigations on AI and Software Engineering



Thank you!

ICSE21 Workshop on Cloud Intelligence In conjunction with the 43rd International Conference on Software Engineering

Schedule: 11:00am - 7:30pm CET on May 29th, 2021