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Background

• Modern software systems are serving many aspects of our life 
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Cloud Computing

• Cloud adoption rising

• Cloud revenue growing
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Worldwide Public Cloud Service Revenue Forecast (Billions of U.S. Dollars)



Microsoft Azure Global Network
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https://azure.microsoft.com/en-us/global-infrastructure/global-network/

60+ regions 100 Gbps bandwidth 130,000 miles of fiber optics

https://azure.microsoft.com/en-us/global-infrastructure/global-network/


Real-World Revenue Loss

5http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion

http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion


Cloud Resilience Is Very Crucial!

• State-of-the-art cloud reliability
• Service Level Agreement (SLA)

• 5-6 9s’ availability

• High degree of automation

• Cloud reliability issues
• Tough cloud failures take a long time to mitigate

• Impose large revenue loss

• Harm customer trust and enterprise reputation
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Software Reliability Engineering (SRE)
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Data-Driven AI Applications
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Data Models/Paradigms Tasks

❖ Image classification

❖ Image localization

❖ Object detection

❖ Semantic segmentation

❖ Machine translation

❖ Information retrieval

❖ Question answering

❖ Sentiment Analysis

❖ Natural language

understanding

❖ Code summarization

❖ Code clone detection

❖ Code suggestion

❖ API recommendation

❖ Bug localization

❖ Semantic parsing

RNN

LSTM

GNN

CNN



Cloud Generates a Variety of Data

9

Incident 

Ticket

Infrastructure Layer

Compute Networking Storage

Virtual Machine Physical Machine

Platform Layer

Container Orchestration Database

Meter 

Data

Alert

Application Layer

MicroserviceApplication Function

Users

On-call
Engineer

Customer

Service

Log

Topology



Challenges of Resilient Cloud 
Operations

• Current Status:
• Incidents are highly-correlated, but separately resolved

• Reasons:
• New DevOps paradigm, complex service dependency, load balance, backup and 

restore
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Humans are not good at solving this large-scale complex problem, but AI is
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Main Contents in This Talk
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Root Cause 

Analysis

AIOps: Log Analysis
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Log Parsing: Preprocessing of Log 
Data

• Objective
• transform raw log data to structural data

• Key problem to solve
• extract event type and variables in log messages
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Parsing

P. He, J. Zhu, S. He, J. Li and M. R. Lyu, “An Evaluation Study on Log Parsing and Its Use in Log Mining,” DSN, 2016.

P. He, J. Zhu, Z. Zheng and M. R. Lyu, “Drain: An Online Log Parsing Approach with Fixed Depth Tree,” ICWS, 2017. 

P. He, J. Zhu, S. He, J. Li, and M.R. Lyu, “Towards Automated Log Parsing for Large-Scale Log Data Analysis,” TDSC, 2018.



Log Anomaly Detection

• Feature Engineering
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Log Anomaly Detection
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Log anomaly 

detection algorithms

Deep learning 

models

RNN-based 

models

Other 

models

Traditional machine 

learning algorithms

Dimensionality 

reduction

Frequent 

pattern mining
Others

Graph 

mining
ClassificationClustering

S. He, P. He, Z. Chen, T. Yang, Y. Su and M.R. Lyu, “A Survey on Automated Log Analysis for Reliability Engineering”. ACM Comput. Surv. 2021



Source code
Bug reports
Change histories

Data Collection

Log-based Failure Diagnosis for Cloud 
System

• Log is the major source for failure diagnosis
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Failure Diagnosis: Ranking Buggy 
Functions
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A trace can contain millions 
of system calls

T. Zaman, X. Han, T. Yu, “SCMiner: Localizing System-Level Concurrency Faults from Large System Call Traces”, ASE 2019

• PCA algorithm to find abnormal components



Root Cause 

Analysis

AIOps: KPIs Analysis

19

Anomaly 

Detection

Failure 

Diagnosis

Failure 

Prediction

Log Meter Data Topology Alert Incident Ticket



Key Performance Indicators (KPIs)
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Multivariate KPIs Analysis

• Should capture dependency of multivariate KPIs

• Unsupervised anomaly detection
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Machine Learning Algorithms

• Training:

• Detection:
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Root Cause 

Analysis

AIOps: Correlation between Logs and 
KPIs
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Two Automated Log Analysis Tasks
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Anomaly Detection 
(binary classification)

Problem Identification  
(multiclass classification)
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Efficient Multi-class Classification / 
Clustering

• Efficient and effective cascading clustering 
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Hierarchical Clustering

S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu and D. Zhang, “Identifying impactful service system problems via log analysis,” FSE, 2018.



Relation between Log and KPI
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Problem Identification

• Impactful problems:
• Can lead to the degradation 

of KPI.

• Target:
• Identify clusters that are 

highly correlated with KPI’s 
changes.

• Method:
• Model the relation between 

cluster sizes and KPI values
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S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, D. Zhang, “Identifying impactful service system problems via log analysis,” FSE, 2018.



Problem Identification

• Evaluation on real Microsoft Azure data
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S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, D. Zhang, “Identifying impactful service system problems via log analysis,” FSE, 2018.



Root Cause 

Analysis

AIOps: Service Dependency
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From Correlation to Root Cause
Investigation

30W. Ping, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen. ‘CloudRanger: Root Cause Identification for Cloud Native Systems’. CCGRID 2018



Root Cause Analysis: Service Call
Graph

• Metric data: response time, error counts, queries per seconds

• Anomaly propagation chains 

• Rank candidate root causes based on correlation analysis 
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D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou, and Z. Wu. ‘MicroHECL: High-Efficient Root Cause Localization in Large-Scale 

Microservice Systems’. ArXiv:2103.01782, 2021



Root Cause 

Analysis

AIOps: Alert Aggregation
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Objectives

• Alert aggregation
• Group alerts associated the same failure

• Narrow down the problem scope

• Root cause recommendation
• Recommend culprit incidents

• Speed up fault localization
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Graph Representation Learning

• Fine-grained cloud monitoring data to auto-complete the 

graphs

• Temporal and topological relationship to learn the alert 

representation vector
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Graph Representation Learning

• Fine-grained cloud monitoring data to auto-complete the 

graphs

• Temporal and topological relationship to learn the alert 

representation vector
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A real case in a top public cloud



Root Cause 

Analysis

AIOps: Incident Management
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Inefficient and Error-prone Workflow

• Significant delays
oCritical incident detection

o Impact scope identification

oRoot cause analysis

oetc.

• Complicated root causes
oMulti-location

oMulti-source

oMulti-layer

oetc.
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Incident Management

Incident management procedure

• Incident reporting
• Time to detect (TTD)

• Incident triage
• Time to engage (TTE)

• Incident mitigation
• Time to mitigate (TTM)
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Incident Mitigation

• Incident mitigation is important yet challenging
• Large volume of incidents

• Cross-region failures

• Cloud system complexity

• etc.
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Characteristics of Incidents

• Incident severity
• Low + Medium incidents > 90%

• High incidents from 1.21% (Network) 

to 5.48% (DCM)

• Critical incidents < 0.5%
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Distribution of incident severity

Chen et al., ‘Towards Intelligent Incident Management: Why We Need It and How We Make It’. FSE 2020



Characteristics of Incidents

• Incident fixing time
• Time to fix (TTF) = TTD+TTE+TTM

• TTF of Low & Medium incidents >

TTF of High incidents

• TTF of Critical is the largest

41
Chen et al., ‘Towards Intelligent Incident Management: Why We Need It and How We Make It’. FSE 2020

Distribution of incident fixing time



Characteristics of Incidents

• Root Cause:
• Network Issue

• Human Error

• Deployment Issue

• External Issue

• Capacity Issue

• Others
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Distribution of incident root causes

30.6% 37.3%

Chen et al., ‘Towards Intelligent Incident Management: Why We Need It and How We Make It’. FSE 2020



Root Cause 

Analysis

AIOps: Outage Prediction
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Alerts vs Outage
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Causal Relationship between Alerts and
Outage
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Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang, H. Dong, Y. Xu, H. Li, Y. Kang, “Outage Prediction and Diagnosis for 

Cloud Service Systems”, WWW 2019 

Bayesian Network

• Historical failure statistics
• Build dependency among alert 

signals

• Train classification model to 
predict outage

Classification models to

link alerts and outages



Causal Relationship between Alerts and
Outage
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Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang, H. Dong, Y. Xu, H. Li, Y. Kang, “Outage Prediction and Diagnosis for 

Cloud Service Systems”, WWW 2019 



Conclusions

• Why cloud resilience needs AIOps?
• Endless pursuit of reliability

• From automatic to intelligent, from reactive to proactive

• Important data sources: log, meter data, topology, alert and incident ticket

• How AIOps achieves reliability goals?
• Endless pursuit of advnaced algorithms

• From anomaly detection, fialure diagnosis, root cause analysis to failure 
prediction

• Intelligent algorithms designed with human experts’ experiences

• What’s the next?
• How to integrate human knowledge with algorithms automatically and 

comprehensively?

• Further investigations on AI and Software Engineering
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